

Test Four

Semester Two 2018 UNIT 2 METHODS

Calculator Assumed 40 minutes

/41 marks

Scientific Calculator, ClassPad, Formula Sheet and One page one side of A4 notes is permitted

Name:	Solutions.	
-------	------------	--

Place a tick in the box next to your Mathematics teachers name:

Mr Strain	
Ms Sindel	
Ms Rimando	
Mr Gannon	
Mr Young	
Mrs Flynn	
Ms Ensly	

Question 1

(1, 1 = 2 marks)

A committee of two is to be chosen from a class of 20 students, 12 boys and 8 girls

i) How many different committees could be chosen?

ii) How many committees if both students are girls?

$$\binom{8}{2}$$
 = 28 \checkmark

Question 2

(1, 1, 1 = 3 marks)

Six students, three boys and three girls, are to be seated in a row of six seats.

Find the number of ways in which they can be seated:

i) if there are no restrictions

ii) if the boys must sit together and the girls must sit together

iii) if the boys must sit together.

$$(3 \times 2 \times 1 \times 3 \times 2 \times 1) \times 4$$

36 × 4 = 144

Question 3

(1, 1, 3 = 5 marks)

Consider the graph below

i) State the amplitude of the graph.

ii) State the period of the graph

iii)

Write an equation that will result in the graph.

$$y = 5 \text{ sin } \frac{11x}{8} + 7 \text{ or } 5 \text{ cos } (\frac{11x}{8} - \frac{11}{2}) + 7$$

Question 4

(2, 2 = 4 marks)

a) Simplify into index form.

$$3^{3x+10} \div 15^{4x-6} = \frac{3}{5^{4x-6}} \frac{3}{3^{4x-6}} \frac{3}{3^{4x-6}} = \frac{3^{16-x}}{5^{4x-6}} = \frac{3^{16-x}}{5^{4x-6}} = \frac{3}{5^{4x-6}} = \frac{3}{5^{$$

b) Solve

$$\sqrt{2}\cos 2x - 1 = 0 \quad \text{for } -2\pi \le x \le 0.$$

If $\sin(x) = \frac{3}{5}$ and $\cos(y) = \frac{5}{13}$, where x is in the second quadrant and y in the fourth, find the exact value of $\sin(x - y)$.

$$\frac{\sin (x-y)}{\sin (x-y)} = \frac{\sin x \cos y - \sin y \cos x}{\sin (x-y)} = \frac{3}{5} \left(\frac{5}{13} \right) - \left(-\frac{12}{13} \right) \left(-\frac{4}{5} \right) \\
= \frac{15}{65} - \frac{48}{65}$$

$$= \frac{-33}{65}$$

Shown below are the graphs of

 $f(x) = \tan(ax + b)$ and $h(x) = e\cos(x + f)$ where x is in radians.

i) Determine the values of the constants a, b, e and f.

$$a = 1$$
 V
 $b = \frac{1}{6}$ V
 $e = -2$ V
 $f = -\frac{1}{3}$ V

ii) Use the graph to solve $f(x) = h(x), -\pi \le x \le \pi$.

Consider quadrilateral ABCD, with diagonal BD dividing the quadrilateral into two acute-angled triangles.

a) Calculate the length of the diagonal BD.

$$C^2 = a^2 + b^2 - 2ab \cos C$$

= $57^2 + 60^2 - 2(57)(60) \cos 52^{\circ}$
 $C = 51.36 \text{ mm}$

b) Give the possible sizes of angle C

$$\frac{3inC}{51.36} = \frac{5in 48}{40}$$

 $\sin C = 0.9542$
 $C = 72.59^{\circ}$ or 107.41°

c) Why must one of the angles be discarded?

d) Calculate the area of quadrilateral ABCD.

Area = $\frac{1}{2}$ abSinC + $\frac{1}{2}$ ab SinC

= $\frac{1}{2}$ (57)(60) SinS2 + $\frac{1}{2}$ (51.36)(40) Sin 59.41

= $\frac{1}{2}$ (31.7 mm²

Page 6 of 8

The graph below shows the number of assaults in a particular suburb since 1980.

Find an exponential model for the number of assaults each year where t is the time since 1980.

A =
$$1000r^{\pm}$$

 $1575 = 1000r^{\pm}$
 $\therefore r = 1.12 - 1.12$
 $\therefore A = 1000 (1.12)^{\pm}$

Assuming there was no intervention set up for this suburb, how many assaults would be predicted for 2020?

$$A = 1000 (1.12)^{40}$$
 $\approx 93.051 \text{ assaults}$

c) When will the assault level have increased 100-fold?

From 1000 to 100 000

$$100 000 = 1000 (1.12)^{\pm}$$
 $\pm = 40.63$
 $\approx 41 \text{ years}$

Page 7 of 8

Page 7 of 8

Two circles with radii 25cm and 20cm have their centres 30 cm apart. Determine the size of the common area to both circles correct to nearest square centimetre.

Big Circle

$$\cos C = \frac{c^2 - a^2 - b^2}{-2ab}$$

$$= \frac{20^2 - 25^2 - 30^2}{-2(25)(30)}$$

$$COSC = 0.75$$
 $C = 0.7227 \text{ RAD}$
 $2C = 1.4455 \text{ RAD}$
 $A_1 = \frac{1}{2}(25) \times (1.4455 - Sin 1.4455)$

$$A_1 = \frac{1}{2}(25) \times (1.445)^2$$

= 141.67 cm²

$$= 141.67 \text{ cm}^2$$

Small
$$cosd = \frac{25^2 - 30^2 - 30^2}{-2(20)(30)}$$

$$2d = 1.9468$$

$$2d = 1.9468 - \sin 1.946$$

$$A_2 = \frac{1}{2}(20) \times C_2$$

d = 0.9734 RAD 2d = 1.9468 RAD $2d = 1.9468 - \sin 1.9468$ $A_{2} = \frac{1}{2}(20)^{2} \times (1.9468 - \sin 1.9468)$ $= \frac{1}{2}(30)^{2} \times (1.9468 - \sin 1.948)$ $= \frac{1}{2}(30)^{2} \times (1.9468 - \sin 1.9468)$ $= \frac{1}{2}(30)^{2} \times (1.9468 - \sin 1.9468)$ $= \frac{1}{2}(30)^{2} \times (1.9468 - \sin 1.9468)$